Exam Advanced Logic

Instructions:

- Put you name and student number on the top left of the first page.
- Put your name on subsequent pages as well.
- Do not use pencil or a red pen to make your exam.
- Leave ten lines blank below your name on the first page.
- Motivate all your answers.
- If you want to inspect your exam after it has been graded, you can do so by making an appointment with Barteld Kooi, tel. 050-3636924.
- Please fill in the anonymous course evaluation

Good luck!

1. Induction ($\mathbf{1 0} \mathbf{~ p t}$) Consider the language of propositional logic without negation, i.e. the neg-free-wffs.
i Each propositional letter p is a neg-free-wff.
ii If A and B are neg-free-wffs, then so are $(A \wedge B),(A \vee B),(A \rightarrow B)$ and $(A \leftrightarrow B)$.
iii Nothing is a neg-free-wff unless it is generated buy repeated applications of i and ii.

Also consider the valuation v that assigns truth value 1 to all propositional letters.
Show by induction that $v(A)=1$ for all neg-free-wffs.
2. Three-valued logics (10 pt) Determine whether the following holds in $R M_{3}$ using a truth table.

$$
p \supset(q \wedge r) \models(r \supset \neg q) \wedge(\neg r \supset p) \wedge p
$$

3. FDE tableau ($\mathbf{1 0} \mathbf{~ p t) ~ B y ~ c o n s t r u c t i n g ~ a ~ s u i t a b l e ~ t a b l e a u ~ d e t e r m i n e ~}$ whether the following formula is valid in FDE. If the formula is invalid, provide a counter model.

$$
(\neg(\neg p \vee q) \vee p) \supset p
$$

4. Fuzzy logic ($\mathbf{1 0} \mathbf{~ p t)}$) Determine whether the following holds in $\mathrm{L}_{\mathcal{N}}$ (where $D=\{1\}$). If so, show that if the premises have value 1 , so does the conclusion. If not, provide a counter-model.

$$
\vDash((p \vee q) \wedge(p \rightarrow r) \wedge(q \rightarrow r)) \rightarrow r
$$

5. Basic modal tableau ($\mathbf{1 0} \mathbf{~ p t}$) By constructing a suitable tableau determine whether the following formula is valid in K. If the formula is invalid, provide a counter model.

$$
\square p \supset \square(\square p \supset \square \square p)
$$

6. Normal modal tableau (10 pt) By constructing a suitable tableau determine whether the following formula is valid in $K \rho$. If the formula is invalid, provide a counter model.

$$
p \supset(\square(p \supset \square p) \supset \square p)
$$

7. First-order modal tableau ($\mathbf{1 0} \mathbf{~ p t) ~ B y ~ c o n s t r u c t i n g ~ a ~ s u i t a b l e ~ t a b l e a u ~}$ determine whether the following formula is valid in $V K^{t} \eta$. If the formula is invalid, provide a counter model.

$$
\langle P\rangle[F](\exists x P x \supset[F] \exists x P x) \supset(\exists x P x \supset \neg\langle F\rangle \forall x \neg P x)
$$

8. Soundness and completeness (10pt) Consider the following tableau in K, which contains only one branch which we call b
$\neg(\diamond \diamond p \supset \diamond p), 0$
$\diamond \diamond p, 0$
$\neg \diamond p, 0$
$\square \neg p, 1$
$0 r 1$
$\diamond p, 1$
$\neg p, 1$
$1 r 2$
$p, 2$
(a) Is b a complete branch?
(b) Branch b is open. Provide an interpretation \mathcal{I} and a function f such that f shows that \mathcal{I} is faithful to b.
9. Default logic (10 pt) Consider the folowing set of default rules:

$$
\begin{aligned}
& D=\left\{\delta_{1}=\frac{S(x): Q(x) \wedge R(x)}{T(x)}, \quad \delta_{2}=\frac{T(x): \neg R(x)}{P(x)},\right. \\
&\left.\delta_{3}=\frac{S(x): T(x)}{P(x)}, \quad \delta_{4}=\frac{P(x) \vee T(x): S(x)}{R(x)}\right\},
\end{aligned}
$$

and initial set of facts:

$$
W=\{\forall x P(x) \rightarrow \neg Q(x), S(e)\} .
$$

You only need to apply the default rules to the relevant constant e. Recall that a formula φ is a sceptic consequence if and only if φ is true in every extension of (W, D), while it is a credulous consequence (goedgelovig gevolg) if and only if φ is true in some extension of (W, D).
(a) Draw the process tree of this default theory.
(b) Is $T(e)$ a sceptic consequence of this theory?
(c) Is $P(e)$ a credulous consequence of this theory?

